南湖新闻网讯(通讯员 汪婉琴 )近日,我校化学学院项勇刚教授领衔的有机光电材料研究团队在国际期刊 Nature Communications 上发表了题为“Ultrastable amide-like isoquinolone-linked covalent organic frameworks for accelerated photocatalytic single-electron transfer transformation”的研究论文。团队开发出一种“自锁定”级联反应策略,成功构筑了异喹啉酮桥连晶态共价有机框架,显著提升了光催化单电子转移反应效率,为绿色化学转化和新型光催化剂设计提供了新的材料基础。

图一 喹唑啉酮桥共价有机框架构筑
共价有机框架(COFs)因可设计性强、孔道可调等特点,在光电、催化与环境应用中展现出广阔潜力。团队前期研究发现,酰胺类连接虽在单电子转移反应中具备优势,但由于共轭性不足和骨架刚性有限,其光电性能与结构稳定性难以同时提升。在此背景下,该团队发展了一锅化“自锁定”级联策略,使材料在形成过程中依次经历亚胺缩合、6π 电环化与氧化转化,将动态的亚胺键转变为平面、刚性并具扩展共轭的异喹啉酮结构。该策略既弥补了酰胺类连接的固有限制,也实现了酰胺特性与芳杂环高共轭骨架的统一,使材料在强酸、强碱及强还原等苛刻条件下仍能保持稳定。
基于这一结构优化,这类新型 COFs 在光吸收能力、载流子分离效率和激发态寿命方面均得到提升。飞秒瞬态吸收光谱表明其电荷复合显著抑制,在 α-溴代苯乙酮脱卤和脱羧 Minisci 等单电子转移光催化反应中表现优于传统亚胺与酰胺连接材料,并具有良好的循环稳定性。理论计算进一步揭示了异喹啉酮结构在促进电子转移、降低反应能垒方面的作用。该成果不仅拓展了 COF 键连设计与光催化材料的结构边界,也展现了团队在多孔光功能材料方向的长期积累与持续探索,并为农业绿色合成、生物质高效转化和投入品减量增效等方向提供了具有潜力的材料基础。
论文第一作者为化学学院博士研究生汪婉琴和赵晓东,项勇刚教授和成万民副教授为论文通讯作者。该研究得到国家自然科学基金和中央高校基本科研业务费专项资金的资助。
英文摘要:
The development of covalent organic frameworks (COFs) that integrate robust chemical stability with efficient charge carrier dynamics remains a critical challenge for photocatalytic applications. Herein, we present a self-locking strategy to synthesize amide-like isoquinolone-linked COFs (IQO-COFs). By leveraging ortho-vinyl aromatic aldehyde and aromatic amine precursors, a tandem process involving thermal 6π-electrocyclization of imine intermediates and Cu(OAc)₂-catalyzed aerobic oxidation enables the irreversible formation of rigid, conjugated isoquinolone linkages. Four crystalline IQO-COFs are constructed with high conversion efficiency and gram-scale feasibility. Locking amide into isoquinolone synergizes enhanced π-electron delocalization with structural rigidity, significantly suppressing exciton recombination and boosting photogenerated charge separation. As a result, IQO-COFs achieve high photocatalytic performance in single-electron transfer (SET)-driven reactions, including the dehalogenation of α-bromoacetophenone and the decarboxylative Minisci reaction under harsh conditions, outperforming amide-linked counterparts. This work establishes a versatile platform to engineer COFs with tailored stability and electronic properties, unlocking new potential for high-performance photocatalytic systems.
论文链接:https://www.nature.com/articles/s41467-025-67058-z
审核:项勇刚