南湖新闻网讯(通讯员 文书海)近日,我校资源与环境学院土壤微生物生态与环境健康课题组在土壤多重环境胁迫生态效应方面取得方面取系列进展,相关成果分别以“Vulnerability of soil food webs to chemical pollution and climate change”与“Negative impacts of global change stressors permeate into deep soils”为题发表于Nature Ecology & Evolution和Ecology Letters。
环境污染、气候变化等显著影响土壤生物多样性与食物网,进而影响生态系统功能。尽管土壤多营养级网络具有缓冲环境胁迫潜力,但在气候变化背景下,土壤污染对食物网的影响机制仍不清楚。本研究系统分析了环境污染与气候变化因子多重胁迫对土壤生物多样性、食物网结构及其稳定性的综合效应,并强调在评估土壤生态系统稳定性时,应充分考虑化学污染的作用机制与生态效应(图1)。在此基础上,提出了基于土壤食物网理论的多目标协同调控概念框架:1)以微生物组调控为核心,强化土壤食物网基底,同步减少气候变化与环境污染胁迫;2)基于功能补偿机制,重构关键功能类群和顶级捕食者,增强网络稳健性和冗余度;3)通过化学信号介导的种间互作调控,优化营养级间能量流动阻控污染物传递。该框架为缓解多重胁迫效应、提升土壤功能稳定性提供了重要理论依据。

图1 化学污染与气候变化对土壤食物网及生态系统功能的复合胁迫效应
然而,多重胁迫对土壤剖面的生态效应仍不明确。研究团队进一步在全国44生态系统采集了0-1 m土壤剖面样品,聚焦气候变化、人类活动、土壤污染与退化相关的8类全球变化胁迫因子与6种关键生态功能,基于多胁迫阈值法与平均多功能指数等,探究了土壤生态功能与全球变化的关系。发现多胁迫生态效应可以渗透到深层土壤,随着多重胁迫因子数量的增加,土壤全剖面的生态多功能性显著下降(图2)。其中,多重胁迫数量对深层土壤多功能性变异的解释量最大,且在中等胁迫水平(即胁迫强度超过最大观测值的50%)时,其负效应最为显著。此外,不同情景分析表明,多胁迫因子数量高的环境中,单一气候胁迫因子对生态功能的负效应进一步被放大,且该“胁迫增强效应”在深层土壤中尤为显著。这些结果在全国尺度上阐明了多重胁迫对土壤生态功能的影响特征,为土壤生态系统多功能服务的维持和可持续管理提供重要理论依据。

图2 多重胁迫对土壤多功能性的影响
我校资源与环境学院刘玉荣教授和文书海博士后为论文第一作者,刘玉荣、中国科学院生态环境研究中心朱永官院士和为西班牙国家研究委员会塞维利亚自然资源和农业生物学研究所Manuel Delgado-Baquerizo教授为论文共同通讯作者。澳大利亚西悉尼大学Brajesh K. Singh教授、Tadeo Sáez-Sandino博士、德国柏林自由大学Matthias C. Rillig教授、西班牙阿利坎特大学Emilio Guirado博士、华中农业大学谭文峰教授、黄巧云教授、郝秀丽副教授、冯娇副研究员、陈家赢副教授、研究生郝芸芸、张文、刘钟文也参与了研究。研究得到了国家自然科学基金和华中农业大学人才项目资助。
审核人 刘玉荣
【英文摘要1】
Soil food webs are critical for maintaining ecosystem functions but are challenged by various stressors including climate change, habitat destruction and pollution. While complex multitrophic networks can, in theory, buffer environmental stress, the impacts of anthropogenic chemicals on soil food webs under climate change remain poorly understood. Here, we propose that the impacts of chemical pollution on soil communities have been largely underestimated, particularly for climate change-impacted ecosystems. We explore the interactive effects of environmental stressors on soil food webs, and the importance of integrating chemical pollution impacts into assessing soil food web stability. We also discuss a conceptual framework involving microbiome manipulation, community compensatory dynamics, and interaction modulation to mitigate the combined impacts of chemical pollution and climate change on soil food webs.
论文链接:https://doi.org/10.1038/s41559-025-02736-1
【英文摘要2】
Surface soils are highly vulnerable to multiple global change stressors associated with climate change and human activity; however, whether the impacts of this increasing number of stressors penetrate deeper soils remains virtually unknown. Here, we conducted a continental-scale survey of soil profiles (0–100 cm). Results showed that multiple stressors jointly affect multiple soil functions (from soil carbon sequestration to pathogen control) across top (0–30 cm), subsurface (30–60 cm) and deep soils (60–100 cm). An increasing number of stressors was especially detrimental to the capacity of ecosystems to support productivity and regulate soil-borne pathogens across all depths. Further analyses revealed that climatic stressors interact with multiple environmental stressors, diminishing multifunctionality across the soil profile. Our work demonstrates that the effects of multiple stressors can permeate the entire soil profile, highlighting that an increasing number of global change stressors at low levels significantly threaten multiple functions supported by deep soils.
论文链接:https://doi.org/10.1111/ele.70143