科学研究
首页 / 科学研究 / 正文
我校学者在冠层城市热岛效应的缓解策略方面取得新进展

南湖新闻网讯(通讯员 李思韬)近日,我校园艺林学学院风景园林系城市生态健康诊断与蓝绿空间效能优化创新团队吴昌广副教授课题组在学术期刊Building and Environment上发表论文“Ameliorating canopy urban heat island in block level: A holistic investigation into the radius, form, and typologies”,研究解析了邻里层面冠层城市热岛效应强度(Canopy urban heat island intensity,CUHII)的空间调控机制及尺度依赖性,为局部热调控策略制定提供了新的科学依据。

明确不同规模地块的景观空间特征如何影响CUHII,是邻里层面制定有效城市降温策略的关键前提。 然而,现有成果偏重于空间特征参量与CUHII的回归关系,较少考虑尺度背景及复杂景观要素间交互作用,这为探究城市空间特征的热效应及适应性设计带来了不确定性。本研究利用武汉市高精度城市气象监测与建成环境空间数据,评估了50~250 m分析半径内绿色植被、建筑组群及不透水地表的景观组分和空间构型对夏季CUHII变化的解释效力,进而识别关键地块空间影响因子及其组合模式对热环境的协同作用。

图1 城市建成空间内不同景观元素及其异质化空间特征对CUHII的综合影响

研究表明,不同分析半径下地块空间形态对CUHII的解释效力存在效应阈值,并以200 m半径的效力最高。多样化空间形态因子对CHUII表现出层级化的调控作用,其中绿地率和建筑平均高度为最重要的影响因子,其次是建筑容积系数和绿色空间形状指数。设计师可优先考虑扩大绿地覆盖同时控制建筑高度以有效缓解局部高温,并辅以更多小体量建筑及紧凑式植被布置以促进降温。依据识别的关键空间影响因子及效率阈值,研究进一步划分了6种典型空间形态类型(Building-vegetation combination typologies,BGT),并发现不同BGT的平均CUHII存在显著性梯度差异且最高达1.9 ℃。BGT分类方案实现了地块空间形态类型与热属性的结合,其可以辅助快速识别热环境优先干预地块,并针对不同场景采取差异化降温设计策略。最后,通过整合热环境管理单元的适宜半径尺寸、空间因子诊断及形态类型管理,研究构建一套场景化的热调控策略框架,为缓解城市高温提供整体决策辅助和技术支持。

图2 不同分析半径下地块空间形态指标的多重共线性检验及其与CUHII的相关性

图3 关键空间影响因子与CUHII变化的部分依赖图

图4 BGT类型间的CUHII差异及其显著性

图5 场景化的CUHII优先级缓解策略框架

该研究得到了国家自然科学基金、武汉市园林和林业局科技计划的支持。风景园林系博士研究生李思韬为论文第一作者,吴昌广副教授为通讯作者,湖北省规划设计研究总院、武汉市规划研究院、武汉市公共气象服务中心等单位参与了该研究。

审核人 吴昌广

论文链接:

https://doi.org/10.1016/j.buildenv.2025.113281

【英文摘要】

Incorporating heat mitigation knowledge into block-based morphological structure offers an effective means of translating academic research into practical urban management. However, uncertainties remain regarding the appropriate size of analysis units, the cooling effectiveness of heterogeneous spatial features with their clustering typologies, and the integration of these factors into comprehensive mitigation decision-making. Focusing on canopy urban heat island intensity (CUHII), we analyzed the thermal impacts of composite landscape elements across blocks of varying sizes using high-resolution meteorological observations at pedestrian height. Feature screening based on the Mantel test, combined with a random forest model, revealed that landscape composition and configuration indices effectively explained the CUHII variation among blocks only at analysis radius of 200 m. The thermal contributions of these indices displayed a hierarchical structure. Building mean height (BMH) and green space ratio (GSR) emerged as the primary warming and cooling factors, respectively, with GSR being particularly critical for nighttime cooling. In addition, increasing the building capacity factor and reducing the green space shape index—reflecting the use of small-volume buildings and compact vegetation layouts—could further enhance cooling effects. Furthermore, for block typologies classified based on the identified efficiency threshold values of key factors, the average CUHII difference was 0.7 °C during the daytime and 1.9 °C during nighttime. Priority should be given to maintaining a GSR above 20% and BMH below 40 m to prevent strong CUHII effects. According to these findings, we proposed a context-specific mitigation strategy that supports targeted spatial design guidance to block with distinct typologies, effectively reducing CUHII.

 

 

收起 展开

最近新闻

单周单篇点击量排名